Name:	
Class:	

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION 2014 MATHEMATICS EXTENSION 1

General Instructions:

- Reading Time: 5 minutes.
- · Working Time: 2 hours.
- · Write in black or blue pen.
- · Board approved calculators & templates may be used
- · A Standard Integral Sheet is provided.
- In Question 11 16, show all relevant mathematical reasoning and/or calculations.
- Marks may not be awarded for careless or badly arranged working.

Total Marks 70

Section I: 10 marks

- Attempt Question 1 10.
- Answer on the Multiple Choice answer sheet provided.
- · Allow about 15 minutes for this section.

Section II: 60 Marks

- · Attempt Question 11 14
- Answer on blank paper unless otherwise instructed. Start a new page for each new question.
- · Allow about 1 hours & 45 minutes for this section.

The answers to all questions are to be returned in separate *stapled* bundles clearly labelled Question 11, Question 12, etc. Each question must show your Candidate Number.

Section I

10 marks

Attempt Questions 1 - 10

Allow about 15 minutes for this section

Use the multiple-choice sheet for Questions 1-10

- The focus of the parabola $(x-3)^2 = -8y$ is 1.
- (3, -2)a)
- b) (3,2)
- c) (0,-2) d) (-2,3)
- Find the acute angle between the lines -x + 2y + 4 = 0 and 3x + y + 1 = 0. Give your 2. answer to the nearest minute.
- a) 81°52′
- b) 78°41'
- c) 54°28′
- d) 45°
- Find the coordinates of the point that divides the interval A (-2, 7) B (12, 0) externally in the 3. ratio 4:3.
- a) (-44, -28)
- b) (44, -28)
- c) (54, -21)
- d) (54, 21)

- 4. $\sin 2x$ equals to
- a)
- b)
- $\frac{2\tan x}{1-tan^2x}$ c)
- d)
- 5. 8 people are to be seated around a circular table. If 2 people wish to sit next to each other, how many different ways can this be done?
- a) 720
- b) 10080
- c) 1440
- d) 5040

- Use the trapezoidal rule to find an approximation for $\int_1^3 \log_e x \, dx$ using 2 subintervals. 6.
- 1.09 a)
- b) 1.10
- c) 1.24
- d) 1.25

- Find the $\lim_{x\to 0} \frac{\sin x \cos x}{2x}$ 7.
- 2 a)
- b) 1
- c)

Which of the following is the graph of $y = -2sin^{-1}3x$? 8.

The diagram below shows the path of a projectile fired with a horizontal velocity v from a cliff 9. of height h.

Which pair of the following values of v and h will give the greatest value of angle θ ?

- $v=10ms^{-1}$ a)
 - h = 30m
- $v = 30ms^{-1}$ h = 50m
- $v = 50ms^{-1}$ c) h = 10m
- d) $v = 10ms^{-1}$ h = 50m

10. The solution to

$$\frac{2t+1}{t-2} > 1$$

- a)
- b) t > 2 or t < -3
- c) t > -1 d) t > 3 or t < -2

Section II

60 marks

Attempt Questions 11 - 14

Allow about 1 hour and 45 minutes for this section

Answer each question in a SEPARATE page. Extra writing papers are available.

In questions 11 – 14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Start a new page.

a) Find

3

$$\int x\sqrt{(x^2+1)^3} \ dx$$

using the substitution $u = x^2 + 1$

b) The area bounded by the curve y=cos2x, the x-axis and lines $x=\frac{\pi}{4}$ and $x=\frac{3\pi}{4}$ is rotated about the x-axis. Find the volume of the solid generated in exact form.

There are 4 families, and each family has exactly 4 children. Assume that the probability of giving birth to a male and giving birth to a female are even.

Determine the probability that exactly 2 of the families will have exactly 2 males and 2 females as children.

d)

Copy the diagram into your answer booklet. *PAC, PBD* are straight lines. *EF* is the tangent at *P*.

3

Prove CD || EF

e)

Prove by mathematical induction that for any positive integer $n \ge 1$.

3

$$\frac{1}{1 \times 5} + \frac{1}{5 \times 9} + \frac{1}{9 \times 13} + \dots + \frac{1}{(4n-3)(4n+1)} = \frac{n}{4n+1}$$

Question 12 (15 marks) Start a new page.

a) A body is in Simple Harmonic Motion and its position at a time t is given by the equation

$$x = R\cos(nt + \alpha) + 1$$

The period of motion is π seconds and $0 \le \alpha \le \frac{\pi}{2}$. Initially the body is at rest 3 units to the left of the origin.

- i. Find the values of R, n and α .
- ii. Find the velocity of the body when $t=\frac{\pi}{6}$
- b)
 Show that the sum of the Arithmetic sequence 2

$$\log_{10}(x-2)$$
, $\log_{10}(x-2)^2$, $\log_{10}(x-2)^3$, ... $\log_{10}(x-2)^n$

is
$$\frac{n}{2}\log_{10}(x-2)^{n+1}$$

c) Andrew, whose height is 2 metres, throws a ball from area A in the direction of the Cohen building which is 15 metres high. He throws the ball with an initial velocity u at angle α , and he is 20 metres from the base of the building. (Assume $\ddot{x}=0$ and $\ddot{y}=-10m/s^2$)

- i. Show that $y = x \tan \alpha \frac{5x^2}{u^2} (1 + tan^2 \alpha) + 2$, at any time t.
- ii. Hence, find between which two angles of projection must he throw the ball to ensure that it lands on the roof of the building, or over, given that u=25m/s. (Answer to the nearest degrees).

2

- d) i. Differentiate $x \tan^{-1} x$
 - ii. Hence, or otherwise, find $\int \tan^{-1} x \, dx$

End of Question 12

Question 13 (15 marks) Start a new page.

a)

At any time *t* minutes, the rate of cooling of a body with temperature *T*, when the surrounding temperature is *S*, is given by the differential equation

$$\frac{dT}{dt} = -k(T - S)$$

for some constant k.

i. Show that $T = S + Ae^{-kt}$, for some constant A, satisfies this differential equation.

1

ii. A metal rod has an initial temperature of 1390°C and cools to 1060°C in 10 minutes when the surrounding temperature is 30°C.

4

Find how much longer it will take the rod to cool to 110°C, giving your answer to the nearest minute.

b)

Find the monic cubic equation whose roots are the squares of the roots of

3

$$x^3 + 2x + 1 = 0$$

c)

The acceleration of a particle *P* is given by the equation

$$\ddot{x} = 18x^3 + 27x^2 + 9x$$

Initially x = -2 and the velocity, v = -6.

i. Show that $v^2 = 9x^2(1+x)^2$

2

ii. Hence, or otherwise, show that

2

$$\int \frac{1}{x(1+x)} dx = -3t + C, \text{ for some constant C}$$

iii. Find the derivative of $\log_e(1+\frac{1}{r})$

1

iv. Using your result in part iii and the initial conditions, find x as a function of t.

2

Question 14 (15 marks) Start a new page.

Show that $x = 5sin\theta$ and $y = 5cos\theta + 1$ satisfies the equation

2

$$y^2 + x^2 - 2y - 24 = 0$$

b)

In the diagram, PQ and SR are parallel railings which are 3 metres apart. The points P and Q are fixed 4 metres apart on the lower railing. Two crossbars PR and QS intersect at T as shown in the diagram. The line through T Perpendicular to PQ intersects PQ at U and SR at V. The length of UT is y metres.

- i. Deduce that $SR = \frac{12}{y} 4$
- ii. Hence show that the total area A of ΔPTQ and ΔRTS is

$$A = 4y - 12 + \frac{18}{y}$$

iii. Find the value of y that minimises A. Justify your answer.

3

3

The coefficient of x^k in $(1+x)^n$, where n is a positive integer, is denoted by c_k (so $c_k = {}^nC_k$)

- i. Show that $c_0 + 2c_1 + 3c_2 + \dots + (n+1)c_n = (n+2)2^{n-1}$
- ii. Find the sum,

$$\frac{c_0}{1 \times 2} - \frac{c_1}{2 \times 3} + \frac{c_2}{3 \times 4} - \dots + (-1)^n \frac{c_n}{(n+1)(n+2)}$$

Showing all necessary working.

End of paper

Student Number 2014

Q1.	A		
)_	A	 	
3.	/1		
	<u> </u>		
4.	<u> </u>	 	
	<u> </u>	 	
	B.C.	 	
·		 	
8		 	
9			
ID	3		
		 	

MATHEMATICS Extension 1 : Quest	оп).\	
Suggested Solutions	Marks	Marker's Comments
a) Let $I = \int x \sqrt{(x^2+1)^3} dx$ Let $u = x^2+1$ $\frac{du}{dx} = 2x$ $\frac{du}{dx} = 2x dx$.	1	
$I = \int \frac{1}{2} \sqrt{u^3} du$	ı	
$=\frac{1}{2}\left[\frac{u^{5/2}}{5/2}\right]$ $=\frac{u^{5/2}}{\sqrt{2}}$	1	Many students
$= \frac{(x^2+1)^{5/2}}{5}$	١	Many students failed to substitute back
b) $V = T_1 \int_{-\infty}^{3\pi/4} \left(\cos 2x\right)^2 dx$		
= TT \ (0)^2 2x clx	1	made this question hade by trying to split it up.

MATHEMATICS Extension \$\mathcal{T}\$: Question	Ш.	
Suggested Solutions	Marks	Marker's Comments
$= \frac{\pi}{2} \int \cos^2 \varphi c + 1 dx$	1	Students who did not Integrate Joos 22 x obx
$= \frac{\pi}{2} \left[\frac{1}{4} \sin 4x + 2 \right]^{\frac{3\pi}{4}}$ $= \frac{\pi}{2} \left[\frac{1}{4} \cos + \frac{3\pi}{4} - \left[\cos \frac{\pi}{4} \right] \right]$	•	mede question ecsies so roud not skin carry forward errors.
= TI/L xT/L = TI/L xT/L units3		some careless calculation erross.
C) Probability of excetly 2 males = 3 = 3	١	many strole-13 stoppedhere.
Pr(exactly 2 family exhause exactly 2 reles and 2 family exactly = 4 (2 (3) 2 (5) 2 (2 (8) 8) = 675 2048	1 fe/ 1 fe/ 1 fe/ (3) 4 (MISSI-1 4(COMMO-

MATHEMATICS Extension 1 : Ques Suggested Solutions	Marks	Marker's Comments
E A B D		
Construct AB and CD Let EPA = d		
ABP=d (angle between targent		
and chord equals and le at circumferere in alternate segments	1	opposite rate opposite rate than a Hernete which is incorrec
ACD = a (exterior angle of cyclic quadrilateral ABCD equals offerite 1-terior angle)	1	W-((= 13 (-(#)
EPA=ACD= Z.		
:. CDITEF (a Hernate angles are equal)	1	

MATHEMATICS Extension 1 : Questi Suggested Solutions	on\\ Marks	Marker's Comments
e) RTP 1 + 1 + 1 + 1 -+ 1 = n 1 x5 + 5x9 + 9x13 (4-2)(4-11) 4-11 Prove true for n=1		
RHS 1 = 1 1x5 = 5 RHS 1 = 1 1+1 = 5 1 true for n=1 Assume true for N= K. RE2 ^t 1xr 1xq 1 - + 1 = k (4xr3)(4kr1) 441 Prove true for N= k+1	}	Must clearly mcke substitution into Law or of PHJ
xx + 1 + + 1 = k+1 (4k+1)(4k+1) (4k+1)(4k+1) 4k+1	for Sic (Follows	5
by 95 sumption LHS = K WK+1 (K+1) (K+15)		
= 4k2+5k+1 (4k+1)(4k+5)		

MATHEMATICS Extension : Question.		
Suggested Solutions	Marks	Marker's Comments
G 1 1 1 (T + 1)		
$= \frac{(4k+1)(k+1)}{(4k+1)(4k+5)}$		
(4KTI)(1K+5)		
= K+1	(
4K+5	'	
By organish of mother office		
By principle of notherchical 1-clackin true for all positive integers 2,1		
1-clacker true for all	1	
portion interes 2.1		

MATHEMATICS Extension 1 : Ques		
Suggested Solutions	Marks	Marker's Comments
a) $x = k(6s(n+1) + 1)$		
period is TT		
$\frac{2\pi}{n} = \pi$		
', n= 2	1	
DC = - ROA - 2 RSIN(2++0x)		Students
when t=0 >c=0		who did not calulate
= -2R SINQ	I	d first had toull
Since OEZETTY		with R.
d=0	١	
2C = R cos 2++ 1		•
when $x = -3$ $t = 0$		
-3 = R + 1		
= P = -4	1	students changed to
		-4 Stah-y
		1200

MATHEMATICS Extension 1: Question		W) 10
Suggested Solutions	Marks	Marker's Comments
b) $\alpha = \log_{10}(x-2)$		
$d = \log_{100}(x^{-2})$		
last term logio (x1-2)		
last term $log_{10}(x-z)^n$ $S_n = \frac{n}{2}(a+1)^n$		
$= \frac{n}{2} \left(\log_{10}(x-i) + \log_{10}(x-i) \right)$		
$= \frac{n}{2} \left(\log_{10} (x-2)^{n+1} \right)$		
urus n (29+6-1)d) also worked		
	!	

Suggested So	ATHEMATICS: Question.	Marks	Marker's Comments
A 2 2C1	15in 0 0		
$\dot{y} = -10$ $\dot{y} = -10t + C_1$ $\dot{y} = -10t + C_1$ $\dot{y} = -10t + usind$ $\dot{y} = -10t + usind$ $\dot{y} = -5t^2 + utsind + C_2$ $\dot{z} = -5t^2 + utsind + C_2$ $\dot{z} = -5t^2 + utsind + C_2$ $\dot{z} = -5t^2 + utsind + C_2$			Many studen13 Pailed to Include (0-1+a-ts)
$y = -5t^{2} + ut \sin \alpha + 2$ $y = -5 \left(\frac{x}{u \cos \alpha}\right)^{2} + \frac{1}{q^{2}(0)^{2}} d^{2} + \frac{1}{q^{2}(0)^{2}} d^{2} + \frac{1}{q^{2}(0)^{2}} d^{2} d^{2} + \frac{1}{q^{2}(0)^{2}} d^{2} d^{2$	$x + a - d + 2$ $+ x + c - d + 2$ $5 \times \frac{2}{4} (1 + 4a - 2d) + 2$		Needed to have secled something in sol-han

Ext MATHEMATICS: Question		
Suggested Solutions	Marks	Marker's Comments
y≥15 u=25MIS x=20		some shiles
15 < 20+ and - 5 x (20)2 - 5 x 202 ta- 2 + 2	1	already faken +2
16 tan 2 d - 100 tan d + 81 & 0		
fer 16 to - 2 d - 100 tond + 81 = 0	1	
$tand = 100 = \sqrt{100^2 - 481816}$ $= 25 = \sqrt{30}$ $= 8$ $tand = 5.2936 $		
: 44° < 2 < 79°	1	
$\frac{d(u)}{dx} = \frac{1}{4}an^{-1}x + \frac{x}{1+xc^2}$	1601	Question well done.
$\frac{d(u)}{dx} = \frac{1}{4}a^{-1}x + \frac{x}{1+x^2}$ $(u) \int \frac{du}{dx} = \frac{1}{4}a^{-1}x dx = \int \frac{d}{dx} x k^{-1}x dx - \frac{x}{1+x^2}$	L	
$\int dx = x dx = x(t_0 - 1)x - \frac{1}{2} \ln(1 + x^2) + C.$		1 for > (tan-1)(+)

TRIAL 2014 XI MATHEMATICS: Question	13	P1014
Suggested Solutions	Marks	Marker's Comments
a) 1) Substitute $T = S + Ae^{-kt}$ into equ LHS = $\frac{dT}{dt}$ $= -kAe^{-kt}$ RHS = $-k(T-s)$ $= -k(Ae^{-kt})$ from above		A show question needs a little more structure than one line.
= -K(AE)		I
$= -kAe^{-kt}$		
So $\frac{1}{-s} = RHS$ $\frac{1}{s} = -k(T-s)$	1	
ii) S=30 and when t=0, T=1391	0	
A = 1360	ı	
When $t=10$, $T=1060$ $1060 = 30 + 1360e^{-10k}$ $e^{-10k} = 1030$		Most people got hese 2 marks
1360		1
$10k = ln\left(\frac{136}{103}\right)$		1
$k = \frac{1}{10} ln_1 \frac{136}{cs}$ (= 0.0277	19)	1
Find t when T=110		•
$110 = 30 + 1360e^{-\frac{136}{103}}$		
1./136)+		'
$\frac{1360}{80} = e^{\ln(\frac{136}{103})\frac{t}{10}}$		1
$\frac{136}{8} = \left(\frac{136}{103}\right)^{\frac{1}{10}}$		1

Marker's Comments

METHOD 2

d, B, & are x values If y has values 2, p, o then y = x2 x = Jy

Substitute into original equation y Jy + 2 Jy + 1 = 0 $J_{4}(y+2) = -1$ y (y+2)2 = (-1)2 y(y2+4y+4) = 1 $y^3 + 4y^2 + 4y - 1 = 0$

 $(9) \times = \frac{d}{dx} \left(\frac{x^2}{2}\right) = 18x^3 + 27x^2 + 9x$ $-\frac{1}{2} = \frac{18x^{4} + 9x^{3} + \frac{9x^{2} + k}{2} + k}{1}$ $V^2 = 92^4 + 18x^3 + 9x^4 + k_2$ $= 9x^{2}(x^{2} + 2x + 1) + k_{\perp}$ = 9x2(x+1)2+ kz When x = -2, V = -6. $36 = 9 \times 4 \times (-1)^2 + k_2$: . k = 0 = 92 = 92 (x+1)2

One mark for integrating and evaluating constant.

One for tidying, inte given form, INIHL LUIL X1 MATHEMATICS: Question 13 Suggested Solutions Marks c) ii) $V^2 = 9x^2(1+x)^2$ 1. V = ±3x(1+x) guitially, V=-6 (moving to lett) and x = -2 and acceleration = - 54 also to left. i velocity always regative. $V = \frac{dx}{dL} = -3x(1+x)$ $\frac{1}{x} \left(\frac{dx}{x(1+x)} = -3 \right) dt$ $\int \frac{dx}{x(1+x)} = -3t + C$ iii) d (m (1-1/x)) = -1/x2 $=\frac{-1}{\chi^2+\chi}=\frac{-1}{\chi(\chi+1)}$ iv) From (iii) $\int \frac{dx}{x(1+x)} = -\ln\left(1+\frac{1}{x}\right) + K$ -- From (11) -3++ C = - ln (1+/x)+K 3t=lm(1+2)+ K2 When t=0, x=-2 .. K2=ln2 $e^{st} = 2(1+\frac{1}{n})$ $e^{3t} - 2 = \frac{2}{2}$ $\hat{\lambda} \cdot \lambda = \frac{2}{e^{3t} - 2}$

The first mark needed hard work if you didn't start with ± sign.

P4 8) 4

Marker's Comments

People should try to be consistent with constants. Pon't use same letter if it has been manipulated.

2014 TRIAL MATHEMATICS Extension 1: Question	n.14	
Suggested Solutions	Marks	Marker's Comments
$y^{2} + x^{2} - 2y - 24 = 0$ $= (5(050 + 1)^{2} + (55,00)^{2} - 2(5(050 + 1)) - 2(5(050 + 1)) + (5(050 + 1)) $	24	
25650 + 10660 + 1 + 255 - 20 - 106050 - 2 - 2 - 25(650 + 5, 20) - 25	4	
= 25(1)-25 (as sind tusid=		
ERHS.		
DEU JO DSTR, PTQ		
<5TR = <ptie (vertically="" on<="" opposite="" td=""><td></td><td></td></ptie>		
<tsr (alternate="" <tqp="" =="" angles="" are="" equal<="" td=""><td>15R</td><td>(P) (P)</td></tsr>	15R	(P) (P)
- LISTR MAPTE (equiangula-)		
TR = Tu (corresponding sides in sim).	trangles (
5 R = 4 x (3-5)		
= \(\frac{1}{4} \)		. ,
in total area = OPTQ + ASTR		
= = = = x4xy + = x(=3-4)(=	(c-	
= 2y+(=-2)(3-4)		0
=24+18-6-6+24		
= 4y - 12 + 5		
リリ H= ヤッ-12-当		,
表 = 4 - 5-		
$\frac{d^2H}{dq^2} = \frac{36}{q^3}$		

MATHEMATICS Extension 1 : Question	n.17	
Suggested Solutions	Marks	Marker's Comments
possible stat. pts when \$\frac{dA}{dy} = 0		
ie 4- 18 = 0		
\sim		*lost lak you'lost a
$4y^2 = 18$ $y^2 = \frac{18}{4} = \frac{9}{2}$		without
y= + 3		
you as its a length; so y= 3 caly		
when $y = \frac{3}{6}$ $\frac{3^2 A}{35^2} = \frac{3}{35}$ >0		
concave of	3	
: relative minimum at J=	15	
since there's only one state of in	.`~~	
the donain you, the relative minim		
is the absolute minimum.	ı	
=> () (1+25)=20+2,x+22x2++6xx		poorly
12 x=1	t	It you di
(1+5)= co+ co+ co+ + co		Don't
: 2° = ° c +	W	1
differentiate wrt x the first egn.	n^C =	∧-1 ×
n(1+x)=1c,+21cx+31c,x2++	, _U	
3 b 'n x=1) 12 - 1 c + 2 c + 3 c +	+0,0	2 Umk.
2 + 0 2 + 2 = 2 + 2 + 2 + 2 + 2 + 2 < + 2 < +	C3+ -	SC3++°C,+)
$(2) + (1)$ $2^{n} + n2^{n-1} = (c_{0} + c_{1} + c_{1} + c_{2} + 2^{n}c_{2} + 2^{n}c_{3} + 2^{n}c_{4} + 2^{n}c_{4} + 2^{n}c_{4} + 2^{n}c_{4} + 2^{n}c_{4} + 2^{n}c_{5} + 2^{n}c_{4} + 2^{n}c_{5} + 2^{n$		-+6+5c, (I)

[&]quot;. Marhs Suggested Mk solns template_V2_no Ls.doc

3/4

MATHEMATICS Extensio	n 1 : Question			
Suggested Solutions		Marks	Marker's Comments	
$\frac{2}{(1+x)^2} = \frac{1}{(x+^2)^2} = \frac{1}{$	+ cn=			
$\frac{2}{(1+x)^{n+1}} = \frac{1}{(x+1)^{n+1}} = \frac{1}{(x+1)^{n+1}} + \frac{1}{(x+1)^{n+1}} = \frac{1}{(x+1)^{n+1}} + \frac{1}$	3 +		1 C, 20+1	
$\frac{1}{n+1} + K_1 = 0$ $K_1 = \frac{1}{n+1}$		l		
$\frac{(1+2c)^{n+1}}{(1+2c)^{n+1}} - \frac{n+1}{1} = \frac{1}{1} = $		3	- + ° = x x + 1	
· Integrate both sides w				
$\frac{(1+x)^{n+2}}{(n+1)(n+2)} - \frac{2c}{n+1} + K_2 = {}^{n}c_{1} + K_3 = {}^{n}c_{2} + K_4 = {}^{n}c_{1} + K_5 = {}^{n}c_{2} + K_5 + K_$	- 1c 23 +	- C2X +	(G+1)x	1+2
sub in x = co				
$\frac{1}{(n+y(n+z))} - 0 + k_2 = 0$ $k_2 = \frac{-1}{(n+y(n+z))}$	$\overline{}$			
$\frac{1}{(c-)(c-2)} - \frac{z}{(c+)(c+2)} = \frac{1}{(c+)(c+2)} = \frac{1}{(c+)($	1×2	+ ^C x3	+ + ¹ - x	12)
5.b in x=-1				
$0 + \frac{1}{(0+)} - \frac{1}{(0+)(0+2)} = \frac{0}{12}$	10 - 10 to	1 nc	2 K4 + (-1) ⁿ	0
$\frac{n+2}{(n+1)(n+2)} = \frac{1}{(n+1)(n+2)} =$			(.1±1	JULY 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Series = $\frac{n+1}{(n+1)(n+2)}$ =				(n+1)(n+3)

	MATHEMATICS Extension 1	: Question. A	,
	Suggested Solutions	Marks	Marker's Comments
≥ <u>(()</u>	integrate both sides	- + c+x	
	$\frac{(1+x)^{n+1}}{n+1} = \frac{1}{2}\cos x + \frac{1}{2}\cos^2 x + \frac{1}{2}\cos^2 x$	$\frac{2^{3}}{3} +$	+ 2 c, x 1
	Integrate both sides		
)) <u>(, , </u>	$\frac{1+x^{n+2}}{1+x^{n+2}} = \frac{1}{1+x^{n+2}} + $	1 C2X +	+ ncnxn+2
	substitute $x = -1$		
)	$\frac{(1+1)^{n+2}}{(n+1)(n-2)} = + {n \choose 1 \times 1} - {n \choose 1}$	+ 2 -	(0+)(n+)
	$ c = \frac{1}{1 \times 2} - \frac{1}{2 \times 3} + \frac{1}{2 \times $		(0+)(0+2)
ę	e sun of series is C	>.	
	for integrating twice	+ subbed the con	in oc=-1.
	for attempting to evaluate for Ally correction so	(tien)